A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis
Abstract The application of deep learning algorithms for medical diagnosis in the real world faces challenges with transparency and interpretability. The labeling of large-scale samples leads to costly investment in developing deep learning algorithms. The application of human prior knowledge is an...
Guardado en:
Autores principales: | Yongli Xu, Man Hu, Hanruo Liu, Hao Yang, Huaizhou Wang, Shuai Lu, Tianwei Liang, Xiaoxing Li, Mai Xu, Liu Li, Huiqi Li, Xin Ji, Zhijun Wang, Li Li, Robert N. Weinreb, Ningli Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/03dcc04288584655bc8b9a6fe5671d8e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients
por: Jun Wang, et al.
Publicado: (2021) -
Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection
por: Fei Li, et al.
Publicado: (2020) -
Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency
por: Christine M. Cutillo, et al.
Publicado: (2020) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Ellery Wulczyn, et al.
Publicado: (2021) -
Digital phenotyping, behavioral sensing, or personal sensing: names and transparency in the digital age
por: David C. Mohr, et al.
Publicado: (2020)