On-the-fly closed-loop materials discovery via Bayesian active learning

Machine learning driven research holds big promise towards accelerating materials’ discovery. Here the authors demonstrate CAMEO, which integrates active learning Bayesian optimization with practical experiments execution, for the discovery of new phase- change materials using X-ray diffraction expe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Gilad Kusne, Heshan Yu, Changming Wu, Huairuo Zhang, Jason Hattrick-Simpers, Brian DeCost, Suchismita Sarker, Corey Oses, Cormac Toher, Stefano Curtarolo, Albert V. Davydov, Ritesh Agarwal, Leonid A. Bendersky, Mo Li, Apurva Mehta, Ichiro Takeuchi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/04164405f2b441b89a1dbae389eb4d1c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Machine learning driven research holds big promise towards accelerating materials’ discovery. Here the authors demonstrate CAMEO, which integrates active learning Bayesian optimization with practical experiments execution, for the discovery of new phase- change materials using X-ray diffraction experiments.