On-the-fly closed-loop materials discovery via Bayesian active learning
Machine learning driven research holds big promise towards accelerating materials’ discovery. Here the authors demonstrate CAMEO, which integrates active learning Bayesian optimization with practical experiments execution, for the discovery of new phase- change materials using X-ray diffraction expe...
Guardado en:
Autores principales: | A. Gilad Kusne, Heshan Yu, Changming Wu, Huairuo Zhang, Jason Hattrick-Simpers, Brian DeCost, Suchismita Sarker, Corey Oses, Cormac Toher, Stefano Curtarolo, Albert V. Davydov, Ritesh Agarwal, Leonid A. Bendersky, Mo Li, Apurva Mehta, Ichiro Takeuchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/04164405f2b441b89a1dbae389eb4d1c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Universal fragment descriptors for predicting properties of inorganic crystals
por: Olexandr Isayev, et al.
Publicado: (2017) -
High-entropy high-hardness metal carbides discovered by entropy descriptors
por: Pranab Sarker, et al.
Publicado: (2018) -
Atomistic Line Graph Neural Network for improved materials property predictions
por: Kamal Choudhary, et al.
Publicado: (2021) -
Settling the matter of the role of vibrations in the stability of high-entropy carbides
por: Marco Esters, et al.
Publicado: (2021) -
Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries
por: Yuma Iwasaki, et al.
Publicado: (2017)