Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces

Single-cell RNA-seq allows the study of tissues at cellular resolution. Here, the authors demonstrate how deep learning can be used to gain biological insight from such data by accounting for biological and technical variability. Data exploration is improved by accurately visualizing cells on an int...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiarui Ding, Aviv Regev
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/050105f7e38d42cba8c66492f371e672
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Single-cell RNA-seq allows the study of tissues at cellular resolution. Here, the authors demonstrate how deep learning can be used to gain biological insight from such data by accounting for biological and technical variability. Data exploration is improved by accurately visualizing cells on an interactive 3D surface.