Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces

Single-cell RNA-seq allows the study of tissues at cellular resolution. Here, the authors demonstrate how deep learning can be used to gain biological insight from such data by accounting for biological and technical variability. Data exploration is improved by accurately visualizing cells on an int...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiarui Ding, Aviv Regev
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/050105f7e38d42cba8c66492f371e672
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:050105f7e38d42cba8c66492f371e672
record_format dspace
spelling oai:doaj.org-article:050105f7e38d42cba8c66492f371e6722021-12-02T16:49:12ZDeep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces10.1038/s41467-021-22851-42041-1723https://doaj.org/article/050105f7e38d42cba8c66492f371e6722021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22851-4https://doaj.org/toc/2041-1723Single-cell RNA-seq allows the study of tissues at cellular resolution. Here, the authors demonstrate how deep learning can be used to gain biological insight from such data by accounting for biological and technical variability. Data exploration is improved by accurately visualizing cells on an interactive 3D surface.Jiarui DingAviv RegevNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-17 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jiarui Ding
Aviv Regev
Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
description Single-cell RNA-seq allows the study of tissues at cellular resolution. Here, the authors demonstrate how deep learning can be used to gain biological insight from such data by accounting for biological and technical variability. Data exploration is improved by accurately visualizing cells on an interactive 3D surface.
format article
author Jiarui Ding
Aviv Regev
author_facet Jiarui Ding
Aviv Regev
author_sort Jiarui Ding
title Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
title_short Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
title_full Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
title_fullStr Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
title_full_unstemmed Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
title_sort deep generative model embedding of single-cell rna-seq profiles on hyperspheres and hyperbolic spaces
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/050105f7e38d42cba8c66492f371e672
work_keys_str_mv AT jiaruiding deepgenerativemodelembeddingofsinglecellrnaseqprofilesonhyperspheresandhyperbolicspaces
AT avivregev deepgenerativemodelembeddingofsinglecellrnaseqprofilesonhyperspheresandhyperbolicspaces
_version_ 1718383375815802880