Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
Single-cell RNA-seq allows the study of tissues at cellular resolution. Here, the authors demonstrate how deep learning can be used to gain biological insight from such data by accounting for biological and technical variability. Data exploration is improved by accurately visualizing cells on an int...
Guardado en:
Autores principales: | Jiarui Ding, Aviv Regev |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/050105f7e38d42cba8c66492f371e672 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
por: Tian Tian, et al.
Publicado: (2021) -
Machine learning meets complex networks via coalescent embedding in the hyperbolic space
por: Alessandro Muscoloni, et al.
Publicado: (2017) -
Dirac quantization and baryon intrinsic frequencies in hypersphere soliton model
por: Soon-Tae Hong
Publicado: (2021) -
Optimisation of the coalescent hyperbolic embedding of complex networks
por: Bianka Kovács, et al.
Publicado: (2021) -
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
por: Jiarui Ding, et al.
Publicado: (2018)