Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device
Abstract An advanced organic photodetector (OPD) with a butter layer of Si-rich silicon oxynitride (SiOxNy) was fabricated. The detector structure is as follows: Indium tin oxide (ITO) coated glass substrate/SiOxNy(10 nm)/naphthalene-based donor:C60(1:1)/ITO. Values of x and y in SiOxNy were careful...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/050c3e9de8b74cbbbe81ce6d0acf6845 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:050c3e9de8b74cbbbe81ce6d0acf6845 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:050c3e9de8b74cbbbe81ce6d0acf68452021-12-02T11:40:51ZDevice performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device10.1038/s41598-017-01653-z2045-2322https://doaj.org/article/050c3e9de8b74cbbbe81ce6d0acf68452017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01653-zhttps://doaj.org/toc/2045-2322Abstract An advanced organic photodetector (OPD) with a butter layer of Si-rich silicon oxynitride (SiOxNy) was fabricated. The detector structure is as follows: Indium tin oxide (ITO) coated glass substrate/SiOxNy(10 nm)/naphthalene-based donor:C60(1:1)/ITO. Values of x and y in SiOxNy were carefully controlled and the detector performances such as dark current and thermal stability were investigated. When the values of x and y are 0.16 and 0.66, the detector illustrates low dark current as well as excellent thermal stability. In the OPD, silicon oxynitride layer works as electron barrier under reverse bias, leading to the decrease of dark current and increase of detectivity. Since the band gap of silicon oxynitride unlike conventional buffer layers can also be controlled by adjusting x and y values, it can be adapted into various photodiode applications.Sung HeoJooho leeSeong Heon KimDong-Jin YunJong-Bong ParkKihong KimNamJeong KimYongsung KimDongwook LeeKyu-Sik KimHee Jae KangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-6 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sung Heo Jooho lee Seong Heon Kim Dong-Jin Yun Jong-Bong Park Kihong Kim NamJeong Kim Yongsung Kim Dongwook Lee Kyu-Sik Kim Hee Jae Kang Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device |
description |
Abstract An advanced organic photodetector (OPD) with a butter layer of Si-rich silicon oxynitride (SiOxNy) was fabricated. The detector structure is as follows: Indium tin oxide (ITO) coated glass substrate/SiOxNy(10 nm)/naphthalene-based donor:C60(1:1)/ITO. Values of x and y in SiOxNy were carefully controlled and the detector performances such as dark current and thermal stability were investigated. When the values of x and y are 0.16 and 0.66, the detector illustrates low dark current as well as excellent thermal stability. In the OPD, silicon oxynitride layer works as electron barrier under reverse bias, leading to the decrease of dark current and increase of detectivity. Since the band gap of silicon oxynitride unlike conventional buffer layers can also be controlled by adjusting x and y values, it can be adapted into various photodiode applications. |
format |
article |
author |
Sung Heo Jooho lee Seong Heon Kim Dong-Jin Yun Jong-Bong Park Kihong Kim NamJeong Kim Yongsung Kim Dongwook Lee Kyu-Sik Kim Hee Jae Kang |
author_facet |
Sung Heo Jooho lee Seong Heon Kim Dong-Jin Yun Jong-Bong Park Kihong Kim NamJeong Kim Yongsung Kim Dongwook Lee Kyu-Sik Kim Hee Jae Kang |
author_sort |
Sung Heo |
title |
Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device |
title_short |
Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device |
title_full |
Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device |
title_fullStr |
Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device |
title_full_unstemmed |
Device performance enhancement via a Si-rich silicon oxynitride buffer layer for the organic photodetecting device |
title_sort |
device performance enhancement via a si-rich silicon oxynitride buffer layer for the organic photodetecting device |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/050c3e9de8b74cbbbe81ce6d0acf6845 |
work_keys_str_mv |
AT sungheo deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT jooholee deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT seongheonkim deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT dongjinyun deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT jongbongpark deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT kihongkim deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT namjeongkim deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT yongsungkim deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT dongwooklee deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT kyusikkim deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice AT heejaekang deviceperformanceenhancementviaasirichsiliconoxynitridebufferlayerfortheorganicphotodetectingdevice |
_version_ |
1718395501273939968 |