Interpretable time-aware and co-occurrence-aware network for medical prediction
Abstract Background Disease prediction based on electronic health records (EHRs) is essential for personalized healthcare. But it’s hard due to the special data structure and the interpretability requirement of methods. The structure of EHR is hierarchical: each patient has a sequence of admissions,...
Enregistré dans:
Auteurs principaux: | Chenxi Sun, Hongna Dui, Hongyan Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/05dcb3c64a9b4748815c61cc95dcf91c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Novel Context Aware Joint Segmentation and Classification Framework for Glaucoma Detection
par: S. Sankar Ganesh, et autres
Publié: (2021) -
iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients
par: Jun Wang, et autres
Publié: (2021) -
Medical educators’ reflection on how technology sustained medical education in the most critical times and the lessons learnt: Insights from an African medical school
par: Joshua Owolabi, et autres
Publié: (2021) -
Implementation challenges and perception of care providers on Electronic Medical Records at St. Paul’s and Ayder Hospitals, Ethiopia
par: Alemayehu Bisrat, et autres
Publié: (2021) -
Interpretable survival prediction for colorectal cancer using deep learning
par: Ellery Wulczyn, et autres
Publié: (2021)