Effects of uncertainty in determining the parameters of the linear Muskingum method using the particle swarm optimization (PSO) algorithm
The Muskingum method is one the simplest and most applicable methods of flood routing. Optimizing the coefficients of linear Muskingum is of great importance to enhance accuracy of computations on an outflow hydrograph. In this study, considering the uncertainty of flood in the rivers and by applica...
Enregistré dans:
Auteurs principaux: | Hadi Norouzi, Jalal Bazargan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IWA Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/05f719d3324b46ec8e93a826e192c460 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Parameter estimation of Muskingum model using grey wolf optimizer algorithm
par: Reyhaneh Akbari, et autres
Publié: (2021) -
Optimal Chiller Loading by Team Particle Swarm Algorithm for Reducing Energy Consumption
par: Wen-Shing Lee, et autres
Publié: (2021) -
Characterization of Giant Magnetostrictive Materials Using Three Complex Material Parameters by Particle Swarm Optimization
par: Yukai Chen, et autres
Publié: (2021) -
Development of a New 8-Parameter Muskingum Flood Routing Model with Modified Inflows
par: Eui Hoon Lee
Publié: (2021) -
A Novel Approach Combining Particle Swarm Optimization and Deep Learning for Flash Flood Detection from Satellite Images
par: Do Ngoc Tuyen, et autres
Publié: (2021)