Mobile Robot Localization Based on Gradient Propagation Particle Filter Network
In order to solve the problem that the gradient information can’t propagate backward due to the non-differentiability of resampling process in the end-to-end training of Differentiable Particle Filters (DPFs) network model, a particle filter network with gradient propagation is proposed i...
Guardado en:
Autores principales: | Heng Zhang, Jiemao Wen, Yanli Liu, Wenqing Luo, Naixue Xiong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/063ce98188f84191bb67566055a282ff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Attitude Estimation Algorithm of Portable Mobile Robot Based on Complementary Filter
por: Mei Liu, et al.
Publicado: (2021) -
LCPF: A Particle Filter Lidar SLAM System With Loop Detection and Correction
por: Fuyu Nie, et al.
Publicado: (2020) -
An Integrated Deep Ensemble-Unscented Kalman Filter for Sideslip Angle Estimation With Sensor Filtering Network
por: Dongchan Kim, et al.
Publicado: (2021) -
The Improved Localized Equivalent-Weights Particle Filter with Statistical Observation in an Intermediate Coupled Model
por: Yuxin Zhao, et al.
Publicado: (2021) -
A Robot Dynamic Target Grasping Method Based on Affine Group Improved Gaussian Resampling Particle Filter
por: Yong Tao, et al.
Publicado: (2021)