Mobile Robot Localization Based on Gradient Propagation Particle Filter Network
In order to solve the problem that the gradient information can’t propagate backward due to the non-differentiability of resampling process in the end-to-end training of Differentiable Particle Filters (DPFs) network model, a particle filter network with gradient propagation is proposed i...
Enregistré dans:
Auteurs principaux: | Heng Zhang, Jiemao Wen, Yanli Liu, Wenqing Luo, Naixue Xiong |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/063ce98188f84191bb67566055a282ff |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Attitude Estimation Algorithm of Portable Mobile Robot Based on Complementary Filter
par: Mei Liu, et autres
Publié: (2021) -
LCPF: A Particle Filter Lidar SLAM System With Loop Detection and Correction
par: Fuyu Nie, et autres
Publié: (2020) -
An Integrated Deep Ensemble-Unscented Kalman Filter for Sideslip Angle Estimation With Sensor Filtering Network
par: Dongchan Kim, et autres
Publié: (2021) -
The Improved Localized Equivalent-Weights Particle Filter with Statistical Observation in an Intermediate Coupled Model
par: Yuxin Zhao, et autres
Publié: (2021) -
A Robot Dynamic Target Grasping Method Based on Affine Group Improved Gaussian Resampling Particle Filter
par: Yong Tao, et autres
Publié: (2021)