Excess α-synuclein compromises phagocytosis in iPSC-derived macrophages

Abstract To examine the pathogenic role of α-synuclein (αS) in Parkinson’s Disease, we have generated induced Pluripotent Stem Cell lines from early onset Parkinson’s Disease patients with SNCA A53T and SNCA Triplication mutations, and in this study have differentiated them to PSC-macrophages (pMac)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Walther Haenseler, Federico Zambon, Heyne Lee, Jane Vowles, Federica Rinaldi, Galbha Duggal, Henry Houlden, Katrina Gwinn, Selina Wray, Kelvin C. Luk, Richard Wade-Martins, William S. James, Sally A. Cowley
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/079e9c373cb245c5abd9ca8f629f34fc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract To examine the pathogenic role of α-synuclein (αS) in Parkinson’s Disease, we have generated induced Pluripotent Stem Cell lines from early onset Parkinson’s Disease patients with SNCA A53T and SNCA Triplication mutations, and in this study have differentiated them to PSC-macrophages (pMac), which recapitulate many features of their brain-resident cousins, microglia. We show that SNCA Triplication pMac, but not A53T pMac, have significantly increased intracellular αS versus controls and release significantly more αS to the medium. SNCA Triplication pMac, but not A53T pMac, show significantly reduced phagocytosis capability and this can be phenocopied by adding monomeric αS to the cell culture medium of control pMac. Fibrillar αS is taken up by pMac by actin-rearrangement-dependent pathways, and monomeric αS by actin-independent pathways. Finally, pMac degrade αS and this can be arrested by blocking lysosomal and proteasomal pathways. Together, these results show that macrophages are capable of clearing αS, but that high levels of exogenous or endogenous αS compromise this ability, likely a vicious cycle scenario faced by microglia in Parkinson’s disease.