Neural networks can learn to utilize correlated auxiliary noise

Abstract We demonstrate that neural networks that process noisy data can learn to exploit, when available, access to auxiliary noise that is correlated with the noise on the data. In effect, the network learns to use the correlated auxiliary noise as an approximate key to decipher its noisy input da...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Aida Ahmadzadegan, Petar Simidzija, Ming Li, Achim Kempf
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/07ae4c39ed6948fc946153bd50bfec10
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!