Neural networks can learn to utilize correlated auxiliary noise
Abstract We demonstrate that neural networks that process noisy data can learn to exploit, when available, access to auxiliary noise that is correlated with the noise on the data. In effect, the network learns to use the correlated auxiliary noise as an approximate key to decipher its noisy input da...
Guardado en:
Autores principales: | Aida Ahmadzadegan, Petar Simidzija, Ming Li, Achim Kempf |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/07ae4c39ed6948fc946153bd50bfec10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder–decoder models
por: Tatiana Konstantinova, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021) -
Auxiliary focus
por: Larry M. Hyman, et al.
Publicado: (1984) -
Channel Noise Optimization of Polar Codes Decoding Based on a Convolutional Neural Network
por: Ming Yan, et al.
Publicado: (2021) -
A critique of pure learning and what artificial neural networks can learn from animal brains
por: Anthony M. Zador
Publicado: (2019)