Improved polygenic prediction by Bayesian multiple regression on summary statistics

Various approaches are being used for polygenic prediction including Bayesian multiple regression methods that require access to individual-level genotype data. Here, the authors extend BayesR to utilise GWAS summary statistics (SBayesR) and show that it outperforms other summary statistic-based met...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Luke R. Lloyd-Jones, Jian Zeng, Julia Sidorenko, Loïc Yengo, Gerhard Moser, Kathryn E. Kemper, Huanwei Wang, Zhili Zheng, Reedik Magi, Tõnu Esko, Andres Metspalu, Naomi R. Wray, Michael E. Goddard, Jian Yang, Peter M. Visscher
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/08ca063725f844dd8f1661fc58a72c97
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:08ca063725f844dd8f1661fc58a72c97
record_format dspace
spelling oai:doaj.org-article:08ca063725f844dd8f1661fc58a72c972021-12-02T15:36:19ZImproved polygenic prediction by Bayesian multiple regression on summary statistics10.1038/s41467-019-12653-02041-1723https://doaj.org/article/08ca063725f844dd8f1661fc58a72c972019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12653-0https://doaj.org/toc/2041-1723Various approaches are being used for polygenic prediction including Bayesian multiple regression methods that require access to individual-level genotype data. Here, the authors extend BayesR to utilise GWAS summary statistics (SBayesR) and show that it outperforms other summary statistic-based methods.Luke R. Lloyd-JonesJian ZengJulia SidorenkoLoïc YengoGerhard MoserKathryn E. KemperHuanwei WangZhili ZhengReedik MagiTõnu EskoAndres MetspaluNaomi R. WrayMichael E. GoddardJian YangPeter M. VisscherNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Luke R. Lloyd-Jones
Jian Zeng
Julia Sidorenko
Loïc Yengo
Gerhard Moser
Kathryn E. Kemper
Huanwei Wang
Zhili Zheng
Reedik Magi
Tõnu Esko
Andres Metspalu
Naomi R. Wray
Michael E. Goddard
Jian Yang
Peter M. Visscher
Improved polygenic prediction by Bayesian multiple regression on summary statistics
description Various approaches are being used for polygenic prediction including Bayesian multiple regression methods that require access to individual-level genotype data. Here, the authors extend BayesR to utilise GWAS summary statistics (SBayesR) and show that it outperforms other summary statistic-based methods.
format article
author Luke R. Lloyd-Jones
Jian Zeng
Julia Sidorenko
Loïc Yengo
Gerhard Moser
Kathryn E. Kemper
Huanwei Wang
Zhili Zheng
Reedik Magi
Tõnu Esko
Andres Metspalu
Naomi R. Wray
Michael E. Goddard
Jian Yang
Peter M. Visscher
author_facet Luke R. Lloyd-Jones
Jian Zeng
Julia Sidorenko
Loïc Yengo
Gerhard Moser
Kathryn E. Kemper
Huanwei Wang
Zhili Zheng
Reedik Magi
Tõnu Esko
Andres Metspalu
Naomi R. Wray
Michael E. Goddard
Jian Yang
Peter M. Visscher
author_sort Luke R. Lloyd-Jones
title Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_short Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_full Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_fullStr Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_full_unstemmed Improved polygenic prediction by Bayesian multiple regression on summary statistics
title_sort improved polygenic prediction by bayesian multiple regression on summary statistics
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/08ca063725f844dd8f1661fc58a72c97
work_keys_str_mv AT lukerlloydjones improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT jianzeng improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT juliasidorenko improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT loicyengo improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT gerhardmoser improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT kathrynekemper improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT huanweiwang improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT zhilizheng improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT reedikmagi improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT tonuesko improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT andresmetspalu improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT naomirwray improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT michaelegoddard improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT jianyang improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
AT petermvisscher improvedpolygenicpredictionbybayesianmultipleregressiononsummarystatistics
_version_ 1718386273392001024