Improved polygenic prediction by Bayesian multiple regression on summary statistics
Various approaches are being used for polygenic prediction including Bayesian multiple regression methods that require access to individual-level genotype data. Here, the authors extend BayesR to utilise GWAS summary statistics (SBayesR) and show that it outperforms other summary statistic-based met...
Guardado en:
Autores principales: | Luke R. Lloyd-Jones, Jian Zeng, Julia Sidorenko, Loïc Yengo, Gerhard Moser, Kathryn E. Kemper, Huanwei Wang, Zhili Zheng, Reedik Magi, Tõnu Esko, Andres Metspalu, Naomi R. Wray, Michael E. Goddard, Jian Yang, Peter M. Visscher |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08ca063725f844dd8f1661fc58a72c97 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Polygenic prediction via Bayesian regression and continuous shrinkage priors
por: Tian Ge, et al.
Publicado: (2019) -
Widespread signatures of natural selection across human complex traits and functional genomic categories
por: Jian Zeng, et al.
Publicado: (2021) -
Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations
por: Ying Wang, et al.
Publicado: (2020) -
Phenotypic covariance across the entire spectrum of relatedness for 86 billion pairs of individuals
por: Kathryn E. Kemper, et al.
Publicado: (2021) -
Extreme inbreeding in a European ancestry sample from the contemporary UK population
por: Loic Yengo, et al.
Publicado: (2019)