Improved polygenic prediction by Bayesian multiple regression on summary statistics
Various approaches are being used for polygenic prediction including Bayesian multiple regression methods that require access to individual-level genotype data. Here, the authors extend BayesR to utilise GWAS summary statistics (SBayesR) and show that it outperforms other summary statistic-based met...
Enregistré dans:
Auteurs principaux: | Luke R. Lloyd-Jones, Jian Zeng, Julia Sidorenko, Loïc Yengo, Gerhard Moser, Kathryn E. Kemper, Huanwei Wang, Zhili Zheng, Reedik Magi, Tõnu Esko, Andres Metspalu, Naomi R. Wray, Michael E. Goddard, Jian Yang, Peter M. Visscher |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/08ca063725f844dd8f1661fc58a72c97 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Polygenic prediction via Bayesian regression and continuous shrinkage priors
par: Tian Ge, et autres
Publié: (2019) -
Widespread signatures of natural selection across human complex traits and functional genomic categories
par: Jian Zeng, et autres
Publié: (2021) -
Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations
par: Ying Wang, et autres
Publié: (2020) -
Phenotypic covariance across the entire spectrum of relatedness for 86 billion pairs of individuals
par: Kathryn E. Kemper, et autres
Publié: (2021) -
Extreme inbreeding in a European ancestry sample from the contemporary UK population
par: Loic Yengo, et autres
Publié: (2019)