MetaBinG: using GPUs to accelerate metagenomic sequence classification.
Metagenomic sequence classification is a procedure to assign sequences to their source genomes. It is one of the important steps for metagenomic sequence data analysis. Although many methods exist, classification of high-throughput metagenomic sequence data in a limited time is still a challenge. We...
Guardado en:
Autores principales: | Peng Jia, Liming Xuan, Lei Liu, Chaochun Wei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/08fd6aa9f1404db6bdb92b3fd966313f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
NeSSM: a Next-generation Sequencing Simulator for Metagenomics.
por: Ben Jia, et al.
Publicado: (2013) -
Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes
por: Richard Allen White, et al.
Publicado: (2016) -
GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods.
por: Alejandro C Crespo, et al.
Publicado: (2011) -
Advantages and Limits of Metagenomic Assembly and Binning of a Giant Virus
por: Frederik Schulz, et al.
Publicado: (2020) -
An Empirical Comparison of EM and K-means Algorithms for Binning Metagenomics Datasets
por: Tapia Reyes,Patricio, et al.
Publicado: (2018)