MetaBinG: using GPUs to accelerate metagenomic sequence classification.
Metagenomic sequence classification is a procedure to assign sequences to their source genomes. It is one of the important steps for metagenomic sequence data analysis. Although many methods exist, classification of high-throughput metagenomic sequence data in a limited time is still a challenge. We...
Enregistré dans:
Auteurs principaux: | Peng Jia, Liming Xuan, Lei Liu, Chaochun Wei |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2011
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/08fd6aa9f1404db6bdb92b3fd966313f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
NeSSM: a Next-generation Sequencing Simulator for Metagenomics.
par: Ben Jia, et autres
Publié: (2013) -
Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes
par: Richard Allen White, et autres
Publié: (2016) -
GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods.
par: Alejandro C Crespo, et autres
Publié: (2011) -
Advantages and Limits of Metagenomic Assembly and Binning of a Giant Virus
par: Frederik Schulz, et autres
Publié: (2020) -
An Empirical Comparison of EM and K-means Algorithms for Binning Metagenomics Datasets
par: Tapia Reyes,Patricio, et autres
Publié: (2018)