Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks
Abstract Extracting relevant properties of empirical signals generated by nonlinear, stochastic, and high-dimensional systems is a challenge of complex systems research. Open questions are how to differentiate chaotic signals from stochastic ones, and how to quantify nonlinear and/or high-order temp...
Enregistré dans:
Auteurs principaux: | , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0920618b54bc4a88b32fead71a4318e4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|