Collider bias undermines our understanding of COVID-19 disease risk and severity
Many published studies of the current SARS-CoV-2 pandemic have analysed data from non-representative samples from populations. Here, using UK BioBank samples, Gibran Hemani and colleagues discuss the potential for such studies to suffer from collider bias, and provide suggestions for optimising stud...
Enregistré dans:
Auteurs principaux: | Gareth J. Griffith, Tim T. Morris, Matthew J. Tudball, Annie Herbert, Giulia Mancano, Lindsey Pike, Gemma C. Sharp, Jonathan Sterne, Tom M. Palmer, George Davey Smith, Kate Tilling, Luisa Zuccolo, Neil M. Davies, Gibran Hemani |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/09f9c535f46548a4a4affd7e1fc10cce |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Gene-environment dependencies lead to collider bias in models with polygenic scores
par: Evelina T. Akimova, et autres
Publié: (2021) -
Undermined Syncretism
par: Om Prakash
Publié: (2011) -
When Words Collide
par: Aslam Farouk-Alli
Publié: (2010) -
The role of forgetting in undermining good intentions.
par: Kristina R Olson, et autres
Publié: (2013) -
Exploiting collider bias to apply two-sample summary data Mendelian randomization methods to one-sample individual level data.
par: Ciarrah Barry, et autres
Publié: (2021)