Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series

Here, Zanin and Olivares review the permutation patterns-based metrics used to distinguish chaos from stochasticity in discrete time series. They analyse their performance and computational cost, and compare their applicability to real-world time series.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Massimiliano Zanin, Felipe Olivares
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/0d10f3333557449fbd1dd92ccc4eb942
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!