Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
Here, Zanin and Olivares review the permutation patterns-based metrics used to distinguish chaos from stochasticity in discrete time series. They analyse their performance and computational cost, and compare their applicability to real-world time series.
Enregistré dans:
| Auteurs principaux: | , |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/0d10f3333557449fbd1dd92ccc4eb942 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|