Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series

Here, Zanin and Olivares review the permutation patterns-based metrics used to distinguish chaos from stochasticity in discrete time series. They analyse their performance and computational cost, and compare their applicability to real-world time series.

Guardado en:
Detalles Bibliográficos
Autores principales: Massimiliano Zanin, Felipe Olivares
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/0d10f3333557449fbd1dd92ccc4eb942
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0d10f3333557449fbd1dd92ccc4eb942
record_format dspace
spelling oai:doaj.org-article:0d10f3333557449fbd1dd92ccc4eb9422021-12-02T18:51:53ZOrdinal patterns-based methodologies for distinguishing chaos from noise in discrete time series10.1038/s42005-021-00696-z2399-3650https://doaj.org/article/0d10f3333557449fbd1dd92ccc4eb9422021-08-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00696-zhttps://doaj.org/toc/2399-3650Here, Zanin and Olivares review the permutation patterns-based metrics used to distinguish chaos from stochasticity in discrete time series. They analyse their performance and computational cost, and compare their applicability to real-world time series.Massimiliano ZaninFelipe OlivaresNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Massimiliano Zanin
Felipe Olivares
Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
description Here, Zanin and Olivares review the permutation patterns-based metrics used to distinguish chaos from stochasticity in discrete time series. They analyse their performance and computational cost, and compare their applicability to real-world time series.
format article
author Massimiliano Zanin
Felipe Olivares
author_facet Massimiliano Zanin
Felipe Olivares
author_sort Massimiliano Zanin
title Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
title_short Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
title_full Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
title_fullStr Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
title_full_unstemmed Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
title_sort ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0d10f3333557449fbd1dd92ccc4eb942
work_keys_str_mv AT massimilianozanin ordinalpatternsbasedmethodologiesfordistinguishingchaosfromnoiseindiscretetimeseries
AT felipeolivares ordinalpatternsbasedmethodologiesfordistinguishingchaosfromnoiseindiscretetimeseries
_version_ 1718377369746538496