Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series
Here, Zanin and Olivares review the permutation patterns-based metrics used to distinguish chaos from stochasticity in discrete time series. They analyse their performance and computational cost, and compare their applicability to real-world time series.
Guardado en:
Autores principales: | Massimiliano Zanin, Felipe Olivares |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d10f3333557449fbd1dd92ccc4eb942 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Temperature chaos is present in off-equilibrium spin-glass dynamics
por: Marco Baity-Jesi, et al.
Publicado: (2021) -
Algorithmic Approaches for Assessing Irreversibility in Time Series: Review and Comparison
por: Massimiliano Zanin, et al.
Publicado: (2021) -
NetSquid, a NETwork Simulator for QUantum Information using Discrete events
por: Tim Coopmans, et al.
Publicado: (2021) -
Variability in higher order structure of noise added to weighted networks
por: Ann S. Blevins, et al.
Publicado: (2021) -
Rydberg series of dark excitons and the conduction band spin-orbit splitting in monolayer WSe2
por: Piotr Kapuściński, et al.
Publicado: (2021)