Ordinal patterns-based methodologies for distinguishing chaos from noise in discrete time series

Here, Zanin and Olivares review the permutation patterns-based metrics used to distinguish chaos from stochasticity in discrete time series. They analyse their performance and computational cost, and compare their applicability to real-world time series.

Guardado en:
Detalles Bibliográficos
Autores principales: Massimiliano Zanin, Felipe Olivares
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/0d10f3333557449fbd1dd92ccc4eb942
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares