A Data-Driven Method for Power System Transient Instability Mode Identification Based on Knowledge Discovery and XGBoost Algorithm

Aiming at the difficulty of unstable pattern recognition after power system fault, a novel identification framework for transient instability mode identification based on knowledge discovery by accuracy maximization (KODAMA) and extreme gradient boosting (XGBoost) algorithm is proposed. In this meth...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Neng Zhang, Huimin Qian, Yuchao He, Lirong Li, Chaoyun Sun
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/0d7ed6350b6f4095991d74927eaf5cd8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!