A Data-Driven Method for Power System Transient Instability Mode Identification Based on Knowledge Discovery and XGBoost Algorithm
Aiming at the difficulty of unstable pattern recognition after power system fault, a novel identification framework for transient instability mode identification based on knowledge discovery by accuracy maximization (KODAMA) and extreme gradient boosting (XGBoost) algorithm is proposed. In this meth...
Guardado en:
Autores principales: | Neng Zhang, Huimin Qian, Yuchao He, Lirong Li, Chaoyun Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d7ed6350b6f4095991d74927eaf5cd8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Extracting Most Discriminative Features on Transient Multivariate Time Series by Bi-Mode Hybrid Feature Selection Scheme for Transient Stability Prediction
por: Seyed Alireza Bashiri Mosavi
Publicado: (2021) -
An eXtreme Gradient Boosting Algorithm Combining Artificial Bee Colony Parameters Optimized Technique for Single Sand Body Identification
por: Renze Luo, et al.
Publicado: (2021) -
Comparative Analysis of SVM, XGBoost and Neural Network on Hate Speech Classification
por: Suwarno Liang
Publicado: (2021) -
Fast Localization of Underground Targets by Magnetic Gradient Tensor and Gaussian-Newton Algorithm With a Portable Transient Electromagnetic System
por: Lijie Wang, et al.
Publicado: (2021) -
Improved Differential Evolution Algorithm for Multi-Target Response Inversion Detected by a Portable Transient Electromagnetic Sensor
por: Shudong Chen, et al.
Publicado: (2020)