1.4-kV Quasi-Vertical GaN Schottky Barrier Diode With Reverse <italic>p-n</italic> Junction Termination

In this paper, we demonstrate high-performance quasi-vertical GaN-on-Sapphire Schottky barrier diodes (SBD) with a reverse GaN <italic>p-n</italic> junction termination (RPN). The SBD has a current output of 1 kA/cm<sup>2</sup> at <inline-formula> <tex-math notation=...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ru Xu, Peng Chen, Menghan Liu, Jing Zhou, Yunfei Yang, Yimeng Li, Cheng Ge, Haocheng Peng, Bin Liu, Dunjun Chen, Zili Xie, Rong Zhang, Youdou Zheng
Formato: article
Lenguaje:EN
Publicado: IEEE 2020
Materias:
Acceso en línea:https://doaj.org/article/0db05b613b094be8ae88b2bfb892336f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we demonstrate high-performance quasi-vertical GaN-on-Sapphire Schottky barrier diodes (SBD) with a reverse GaN <italic>p-n</italic> junction termination (RPN). The SBD has a current output of 1 kA/cm<sup>2</sup> at <inline-formula> <tex-math notation="LaTeX">$V_{F}=2.5$ </tex-math></inline-formula> V, a low <inline-formula> <tex-math notation="LaTeX">$V_{on}$ </tex-math></inline-formula> of 0.66 V &#x00B1; 0.017 V, a low <inline-formula> <tex-math notation="LaTeX">$R_{on,sp}$ </tex-math></inline-formula> of 1.4 <inline-formula> <tex-math notation="LaTeX">$\text{m}\Omega \cdot $ </tex-math></inline-formula>cm<sup>2</sup>, current ON/OFF ratio of over <inline-formula> <tex-math notation="LaTeX">$10^{9}$ </tex-math></inline-formula> (&#x2212;3 V&#x007E;3 V). By introducing the RPN, the breakdown voltage can boost from 459 V to 1419 V, and power figure-of-merit (FOM) can reach 1438 MV/cm<sup>2</sup>. It is shown that the presence of the RPN with a suitable anode recess depth can generate an electric field (EF) opposite to the built-in EF at the center of the second top <italic>p-n</italic> junction, which can decrease the EF peak intensity and make the electric field more uniformly distributed inside the device. Finally, the leakage current of the SBD is inhibited and the breakdown voltage is increased.