Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.

<h4>Background</h4>The SCN5A encoded sodium current (I(Na)) generates the action potential (AP) upstroke and is a major determinant of AP characteristics and AP propagation in cardiac myocytes. Unfortunately, in cardiac myocytes, investigation of kinetic properties of I(Na) with near-phy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Géza Berecki, Ronald Wilders, Berend de Jonge, Antoni C G van Ginneken, Arie O Verkerk
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0dc9df0c1b414cd48ec6774fcc1d6f90
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0dc9df0c1b414cd48ec6774fcc1d6f90
record_format dspace
spelling oai:doaj.org-article:0dc9df0c1b414cd48ec6774fcc1d6f902021-11-18T07:00:49ZRe-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.1932-620310.1371/journal.pone.0015772https://doaj.org/article/0dc9df0c1b414cd48ec6774fcc1d6f902010-12-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21217835/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>The SCN5A encoded sodium current (I(Na)) generates the action potential (AP) upstroke and is a major determinant of AP characteristics and AP propagation in cardiac myocytes. Unfortunately, in cardiac myocytes, investigation of kinetic properties of I(Na) with near-physiological ion concentrations and temperature is technically challenging due to the large amplitude and rapidly activating nature of I(Na), which may seriously hamper the quality of voltage control over the membrane. We hypothesized that the alternating voltage clamp-current clamp (VC/CC) technique might provide an alternative to traditional voltage clamp (VC) technique for the determination of I(Na) properties under physiological conditions.<h4>Principal findings</h4>We studied I(Na) under close-to-physiological conditions by VC technique in SCN5A cDNA-transfected HEK cells or by alternating VC/CC technique in both SCN5A cDNA-transfected HEK cells and rabbit left ventricular myocytes. In these experiments, peak I(Na) during a depolarizing VC step or maximal upstroke velocity, dV/dt(max), during VC/CC served as an indicator of available I(Na). In HEK cells, biophysical properties of I(Na), including current density, voltage dependent (in)activation, development of inactivation, and recovery from inactivation, were highly similar in VC and VC/CC experiments. As an application of the VC/CC technique we studied I(Na) in left ventricular myocytes isolated from control or failing rabbit hearts.<h4>Conclusions</h4>Our results demonstrate that the alternating VC/CC technique is a valuable experimental tool for I(Na) measurements under close-to-physiological conditions in cardiac myocytes.Géza BereckiRonald WildersBerend de JongeAntoni C G van GinnekenArie O VerkerkPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 12, p e15772 (2010)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Géza Berecki
Ronald Wilders
Berend de Jonge
Antoni C G van Ginneken
Arie O Verkerk
Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.
description <h4>Background</h4>The SCN5A encoded sodium current (I(Na)) generates the action potential (AP) upstroke and is a major determinant of AP characteristics and AP propagation in cardiac myocytes. Unfortunately, in cardiac myocytes, investigation of kinetic properties of I(Na) with near-physiological ion concentrations and temperature is technically challenging due to the large amplitude and rapidly activating nature of I(Na), which may seriously hamper the quality of voltage control over the membrane. We hypothesized that the alternating voltage clamp-current clamp (VC/CC) technique might provide an alternative to traditional voltage clamp (VC) technique for the determination of I(Na) properties under physiological conditions.<h4>Principal findings</h4>We studied I(Na) under close-to-physiological conditions by VC technique in SCN5A cDNA-transfected HEK cells or by alternating VC/CC technique in both SCN5A cDNA-transfected HEK cells and rabbit left ventricular myocytes. In these experiments, peak I(Na) during a depolarizing VC step or maximal upstroke velocity, dV/dt(max), during VC/CC served as an indicator of available I(Na). In HEK cells, biophysical properties of I(Na), including current density, voltage dependent (in)activation, development of inactivation, and recovery from inactivation, were highly similar in VC and VC/CC experiments. As an application of the VC/CC technique we studied I(Na) in left ventricular myocytes isolated from control or failing rabbit hearts.<h4>Conclusions</h4>Our results demonstrate that the alternating VC/CC technique is a valuable experimental tool for I(Na) measurements under close-to-physiological conditions in cardiac myocytes.
format article
author Géza Berecki
Ronald Wilders
Berend de Jonge
Antoni C G van Ginneken
Arie O Verkerk
author_facet Géza Berecki
Ronald Wilders
Berend de Jonge
Antoni C G van Ginneken
Arie O Verkerk
author_sort Géza Berecki
title Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.
title_short Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.
title_full Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.
title_fullStr Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.
title_full_unstemmed Re-evaluation of the action potential upstroke velocity as a measure of the Na+ current in cardiac myocytes at physiological conditions.
title_sort re-evaluation of the action potential upstroke velocity as a measure of the na+ current in cardiac myocytes at physiological conditions.
publisher Public Library of Science (PLoS)
publishDate 2010
url https://doaj.org/article/0dc9df0c1b414cd48ec6774fcc1d6f90
work_keys_str_mv AT gezaberecki reevaluationoftheactionpotentialupstrokevelocityasameasureofthenacurrentincardiacmyocytesatphysiologicalconditions
AT ronaldwilders reevaluationoftheactionpotentialupstrokevelocityasameasureofthenacurrentincardiacmyocytesatphysiologicalconditions
AT berenddejonge reevaluationoftheactionpotentialupstrokevelocityasameasureofthenacurrentincardiacmyocytesatphysiologicalconditions
AT antonicgvanginneken reevaluationoftheactionpotentialupstrokevelocityasameasureofthenacurrentincardiacmyocytesatphysiologicalconditions
AT arieoverkerk reevaluationoftheactionpotentialupstrokevelocityasameasureofthenacurrentincardiacmyocytesatphysiologicalconditions
_version_ 1718424021565964288