Optical Characterization of H-Free <i>a</i>-Si Layers Grown by rf-Magnetron Sputtering by Inverse Synthesis Using Matlab: Tauc–Lorentz–Urbach Parameterization
Several, nearly-1-µ<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>-thick, pure, unhydrogenated amorphous-sili...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ebc5b8c66e84f9288485abf11e804db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Several, nearly-1-µ<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula>-thick, pure, unhydrogenated amorphous-silicon (<i>a</i>-Si) thin layers were grown at high rates by non-equilibrium rf-magnetron Ar-plasma sputtering (RFMS) onto room-temperature low-cost glass substrates. A new approach is employed for the optical characterization of the thin-layer samples, which is based on some new formulae for the normal-incidence transmission of such a samples and on the adoption of the inverse-synthesis method, by using a devised Matlab GUI environment. The so-far existing limiting value of the thickness-non-uniformity parameter, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</mo><mi>d</mi></mrow></semantics></math></inline-formula>, when optically characterizing wedge-shaped layers, has been suppressed with the introduction of the appropriate corrections in the expression of transmittance. The optical responses of the H-free RFMS-<i>a</i>-Si thin films investigated, were successfully parameterized using a single, Kramers–Krönig (KK)-consistent, Tauc–Lorentz oscillator model, with the inclusion in the model of the Urbach tail (TLUC), in the present case of non-hydrogenated <i>a</i>-Si films. We have also employed the Wemple–DiDomenico (WDD) single-oscillator model to calculate the two WDD dispersion parameters, dispersion energy, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi mathvariant="normal">d</mi></msub></semantics></math></inline-formula>, and oscillator energy, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi>so</mi></msub></semantics></math></inline-formula>. The amorphous-to-crystalline mass-density ratio in the expression for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mi mathvariant="normal">d</mi></msub></semantics></math></inline-formula> suggested by Wemple and DiDomenico is the key factor in understanding the refractive index behavior of the <i>a</i>-Si layers under study. The value of the porosity for the specific rf-magnetron sputtering deposition conditions employed in this work, with an Ar-pressure of ~4.4 Pa, is found to be approximately 21%. Additionally, it must be concluded that the adopted TLUC parameterization is highly accurate for the evaluation of the UV/visible/NIR transmittance measurements, on the H-free <i>a</i>-Si investigated. Finally, the performed experiments are needed to have more confidence of quick and accurate optical-characterizations techniques, in order to find new applications of <i>a</i>-Si layers in optics and optoelectronics. |
---|