QDCT-Based Blind Color Image Watermarking With Aid of GWO and DnCNN for Performance Improvement
Artificial intelligence (AI) is of great potential for improving the performance of image processing and applications. In this study, we incorporate two AI techniques, namely, the grey wolf optimizer (GWO) and denoising convolutional neural network (DnCNN), within a framework developed based on the...
Enregistré dans:
Auteurs principaux: | Ling-Yuan Hsu, Hwai-Tsu Hu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0f5ce558a4b84b948a8ed8eb8cc1652f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
par: Xingkun He, et autres
Publié: (2021) -
LRW-CRDB: Lossless Robust Watermarking Scheme for Categorical Relational Databases
par: Chia-Chen Lin, et autres
Publié: (2021) -
Digital Image Watermarking Using Arnold Scrambling and Berkeley Wavelet Transform
par: Iman M.G. Alwan, et autres
Publié: (2017) -
Analysis of watermarking techniques in multimedia communications
par: Sridhar Balakrishnan, et autres
Publié: (2021) -
WATERMARKING CITRA DIGITAL MENGGUNAKAN METODE DISCRETE COSINE TRANSFORM
par: Aris Fanani, et autres
Publié: (2016)