Modelling menstrual cycle length in athletes using state-space models
Abstract The ability to predict an individual’s menstrual cycle length to a high degree of precision could help female athletes to track their period and tailor their training and nutrition correspondingly. Such individualisation is possible and necessary, given the known inter-individual variation...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0fe16aad3c494f218d67d7adeace97c9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|