Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks

Neural Networks are known to perform poorly outside of their training domain. Here the authors propose an inverse sampling strategy to train neural network potentials enabling to drive atomistic systems towards high-likelihood and high-uncertainty configurations without the need for molecular dynami...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Daniel Schwalbe-Koda, Aik Rui Tan, Rafael Gómez-Bombarelli
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/1014ecc724a64101ba64cd3dbf9a3690
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!