Humans can decipher adversarial images
Convolutional Neural Networks (CNNs) have reached human-level benchmarks in classifying images, but they can be “fooled” by adversarial examples that elicit bizarre misclassifications from machines. Here, the authors show how humans can anticipate which objects CNNs will see in adversarial images....
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/11bc950f138d40c9b8eaad6a445e6db4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|