Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
In metabolic engineering, mechanistic models require prior metabolism knowledge of the chassis strain, whereas machine learning models need ample training data. Here, the authors combine the mechanistic and machine learning models to improve prediction performance of tryptophan metabolism in baker’s...
Enregistré dans:
Auteurs principaux: | Jie Zhang, Søren D. Petersen, Tijana Radivojevic, Andrés Ramirez, Andrés Pérez-Manríquez, Eduardo Abeliuk, Benjamín J. Sánchez, Zak Costello, Yu Chen, Michael J. Fero, Hector Garcia Martin, Jens Nielsen, Jay D. Keasling, Michael K. Jensen |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/12b7d69682c04fc38cfe252ad2aedc1b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A machine learning Automated Recommendation Tool for synthetic biology
par: Tijana Radivojević, et autres
Publié: (2020) -
Tryptophan Side-Chain Oxidase Enzyme Suppresses Hepatocellular Carcinoma Growth through Degradation of Tryptophan
par: Yang Ai, et autres
Publié: (2021) - International journal of tryptophan research IJTR.
-
Microbial tryptophan catabolites in health and disease
par: Henrik M. Roager, et autres
Publié: (2018) -
A mechanistic model of methane emission from animal slurry with a focus on microbial groups.
par: Frederik R Dalby, et autres
Publié: (2021)