A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene
PLCG1 gene is responsible for many T-cell lymphoma subtypes, including peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), cutaneous T-cell lymphoma (CTCL), adult T-cell leukemia/lymphoma along with other diseases. Missense mutations of this gene have already been found in...
Saved in:
Main Authors: | Safayat Mahmud Khan, Ar-Rafi Md. Faisal, Tasnin Akter Nila, Nabila Nawar Binti, Md. Ismail Hosen, Hossain Uddin Shekhar |
---|---|
Format: | article |
Language: | EN |
Published: |
Public Library of Science (PLoS)
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/130e25749fdd4ee5b61dae6542af2dfd |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
A computational in silico approach to predict high-risk coding and non-coding SNPs of human PLCG1 gene.
by: Safayat Mahmud Khan, et al.
Published: (2021) -
Comprehensive Characterization of the Coding and Non-Coding Single Nucleotide Polymorphisms in the Tumor Protein p63 (TP63) Gene Using In Silico Tools
by: Shamima Akter, et al.
Published: (2021) -
In silico analysis of deleterious SNPs of human MTUS1 gene and their impacts on subsequent protein structure and function.
by: Liza Teresa Rozario, et al.
Published: (2021) -
In silico analysis predicting effects of deleterious SNPs of human RASSF5 gene on its structure and functions
by: Md. Shahadat Hossain, et al.
Published: (2020) -
In silico analyses of deleterious missense SNPs of human apolipoprotein E3
by: Allan S. Pires, et al.
Published: (2017)