“Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets
Abstract Benchmark datasets have a powerful normative influence: by determining how the real world is represented in data, they define which problems will first be solved by algorithms built using the datasets and, by extension, who these algorithms will work for. It is desirable for these datasets...
Enregistré dans:
| Auteurs principaux: | Trishan Panch, Tom J. Pollard, Heather Mattie, Emily Lindemer, Pearse A. Keane, Leo Anthony Celi |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2020
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/137ec39e5c7443ce9fa5c7d8216b54ee |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
par: Po-Chih Kuo, et autres
Publié: (2021) -
What do medical students actually need to know about artificial intelligence?
par: Liam G. McCoy, et autres
Publié: (2020) -
Privacy protections to encourage use of health-relevant digital data in a learning health system
par: Deven McGraw, et autres
Publié: (2021) -
Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
par: Mike D. Rinderknecht, et autres
Publié: (2021) -
Patient-specific COVID-19 resource utilization prediction using fusion AI model
par: Amara Tariq, et autres
Publié: (2021)