Instantaneous generation of protein hydration properties from static structures
Calculating the thermodynamic properties of biochemical systems typically requires resource intensive, multi-step molecular simulations. Here, two deep neural network machine learning methods generate the thermodynamic state of dynamic water molecules in a protein environment solely from information...
Guardado en:
Autores principales: | Ahmadreza Ghanbarpour, Amr H. Mahmoud, Markus A. Lill |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/138db84a81034657b88058276cc0d0a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Local structure and distortions of mixed methane-carbon dioxide hydrates
por: Bernadette R. Cladek, et al.
Publicado: (2021) -
Open questions on methane hydrate nucleation
por: Guang-Jun Guo, et al.
Publicado: (2021) -
Quantifying the binding landscapes of protein–protein interactions
por: Andrew J. Bissette
Publicado: (2021) -
Volumetric Properties for the Aqueous Solution of Yttrium Trichloride at Temperatures from 283.15 to 363.15 K and Ambient Pressure
por: Zhenzhen Jiang, et al.
Publicado: (2021) -
Some topological properties of uniform subdivision of Sierpiński graphs
por: Liu Jia-Bao, et al.
Publicado: (2021)