Instantaneous generation of protein hydration properties from static structures
Calculating the thermodynamic properties of biochemical systems typically requires resource intensive, multi-step molecular simulations. Here, two deep neural network machine learning methods generate the thermodynamic state of dynamic water molecules in a protein environment solely from information...
Enregistré dans:
Auteurs principaux: | Ahmadreza Ghanbarpour, Amr H. Mahmoud, Markus A. Lill |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/138db84a81034657b88058276cc0d0a7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Local structure and distortions of mixed methane-carbon dioxide hydrates
par: Bernadette R. Cladek, et autres
Publié: (2021) -
Open questions on methane hydrate nucleation
par: Guang-Jun Guo, et autres
Publié: (2021) -
Quantifying the binding landscapes of protein–protein interactions
par: Andrew J. Bissette
Publié: (2021) -
Volumetric Properties for the Aqueous Solution of Yttrium Trichloride at Temperatures from 283.15 to 363.15 K and Ambient Pressure
par: Zhenzhen Jiang, et autres
Publié: (2021) -
Some topological properties of uniform subdivision of Sierpiński graphs
par: Liu Jia-Bao, et autres
Publié: (2021)