Classification accuracy and functional difference prediction in different brain regions of drug abuser prefrontal lobe basing on machine-learning
Taking different types of addictive drugs such as methamphetamine, heroin, and mixed drugs causes brain functional Changes. Based on the prefrontal functional near-infrared spectroscopy, this study was designed with an experimental paradigm that included the induction of resting and drug addiction c...
Guardado en:
Autores principales: | Banghua Yang, Xuelin Gu, Shouwei Gao, Ding Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/13bfe1e588184e88bc65d2e1fe0608da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of bi-modal signal in the classification and recognition of drug addiction degree based on machine learning
por: Xuelin Gu, et al.
Publicado: (2021) -
Prefrontal fNIRS-based clinical data analysis of brain functions in individuals abusing different types of drugs
por: Xuelin Gu, et al.
Publicado: (2021) -
Baicalin suppresses autophagy-dependent ferroptosis in early brain injury after subarachnoid hemorrhage
por: Bao Zheng, et al.
Publicado: (2021) -
Saccade and Fixation Eye Movements During Walking in People With Mild Traumatic Brain Injury
por: Ellen Lirani-Silva, et al.
Publicado: (2021) -
Crossing time windows optimization based on mutual information for hybrid BCI
por: Ming Meng, et al.
Publicado: (2021)