Classification accuracy and functional difference prediction in different brain regions of drug abuser prefrontal lobe basing on machine-learning
Taking different types of addictive drugs such as methamphetamine, heroin, and mixed drugs causes brain functional Changes. Based on the prefrontal functional near-infrared spectroscopy, this study was designed with an experimental paradigm that included the induction of resting and drug addiction c...
Enregistré dans:
Auteurs principaux: | Banghua Yang, Xuelin Gu, Shouwei Gao, Ding Xu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIMS Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/13bfe1e588184e88bc65d2e1fe0608da |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Application of bi-modal signal in the classification and recognition of drug addiction degree based on machine learning
par: Xuelin Gu, et autres
Publié: (2021) -
Prefrontal fNIRS-based clinical data analysis of brain functions in individuals abusing different types of drugs
par: Xuelin Gu, et autres
Publié: (2021) -
Baicalin suppresses autophagy-dependent ferroptosis in early brain injury after subarachnoid hemorrhage
par: Bao Zheng, et autres
Publié: (2021) -
Saccade and Fixation Eye Movements During Walking in People With Mild Traumatic Brain Injury
par: Ellen Lirani-Silva, et autres
Publié: (2021) -
Crossing time windows optimization based on mutual information for hybrid BCI
par: Ming Meng, et autres
Publié: (2021)