A generalizable 29-mRNA neural-network classifier for acute bacterial and viral infections
Diagnosing acute infections based on transcriptional host response shows promise, but generalizability is wanting. Here, the authors use a co-normalization framework to train a classifier to diagnose acute infections and apply it to independent data on a targeted diagnostic platform.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1514bf7fdf6d4f5db8c9b6afeda1ce2b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Diagnosing acute infections based on transcriptional host response shows promise, but generalizability is wanting. Here, the authors use a co-normalization framework to train a classifier to diagnose acute infections and apply it to independent data on a targeted diagnostic platform. |
---|