A generalizable 29-mRNA neural-network classifier for acute bacterial and viral infections
Diagnosing acute infections based on transcriptional host response shows promise, but generalizability is wanting. Here, the authors use a co-normalization framework to train a classifier to diagnose acute infections and apply it to independent data on a targeted diagnostic platform.
Guardado en:
Autores principales: | Michael B. Mayhew, Ljubomir Buturovic, Roland Luethy, Uros Midic, Andrew R. Moore, Jonasel A. Roque, Brian D. Shaller, Tola Asuni, David Rawling, Melissa Remmel, Kirindi Choi, James Wacker, Purvesh Khatri, Angela J. Rogers, Timothy E. Sweeney |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1514bf7fdf6d4f5db8c9b6afeda1ce2b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prospective validation of an 11-gene mRNA host response score for mortality risk stratification in the intensive care unit
por: Andrew R. Moore, et al.
Publicado: (2021) -
Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults
por: Jalal Alizadeh, et al.
Publicado: (2021) -
Generalizability of deep learning models for dental image analysis
por: Joachim Krois, et al.
Publicado: (2021) -
Perspectives on the challenges of generalizability, transparency and ethics in predictive learning analytics
por: Anuradha Mathrani, et al.
Publicado: (2021) -
Cross-cultural validation of the stroke riskometer using generalizability theory
por: Oleg Medvedev, et al.
Publicado: (2021)