A generalizable 29-mRNA neural-network classifier for acute bacterial and viral infections
Diagnosing acute infections based on transcriptional host response shows promise, but generalizability is wanting. Here, the authors use a co-normalization framework to train a classifier to diagnose acute infections and apply it to independent data on a targeted diagnostic platform.
Enregistré dans:
Auteurs principaux: | Michael B. Mayhew, Ljubomir Buturovic, Roland Luethy, Uros Midic, Andrew R. Moore, Jonasel A. Roque, Brian D. Shaller, Tola Asuni, David Rawling, Melissa Remmel, Kirindi Choi, James Wacker, Purvesh Khatri, Angela J. Rogers, Timothy E. Sweeney |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/1514bf7fdf6d4f5db8c9b6afeda1ce2b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Prospective validation of an 11-gene mRNA host response score for mortality risk stratification in the intensive care unit
par: Andrew R. Moore, et autres
Publié: (2021) -
Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults
par: Jalal Alizadeh, et autres
Publié: (2021) -
Generalizability of deep learning models for dental image analysis
par: Joachim Krois, et autres
Publié: (2021) -
Perspectives on the challenges of generalizability, transparency and ethics in predictive learning analytics
par: Anuradha Mathrani, et autres
Publié: (2021) -
Cross-cultural validation of the stroke riskometer using generalizability theory
par: Oleg Medvedev, et autres
Publié: (2021)