Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition
Abstract Candida albicans is an opportunistic fungal pathogen colonizing the oral cavity. C. albicans secreted aspartic protease Sap6 is important for virulence during oral candidiasis since it degrades host tissues to release nutrients and essential transition metals. We found that zinc specificall...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/15ddcf2dabd446da987100c3ae3d6c49 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:15ddcf2dabd446da987100c3ae3d6c49 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:15ddcf2dabd446da987100c3ae3d6c492021-12-02T11:52:15ZCandida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition10.1038/s41598-017-03082-42045-2322https://doaj.org/article/15ddcf2dabd446da987100c3ae3d6c492017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03082-4https://doaj.org/toc/2045-2322Abstract Candida albicans is an opportunistic fungal pathogen colonizing the oral cavity. C. albicans secreted aspartic protease Sap6 is important for virulence during oral candidiasis since it degrades host tissues to release nutrients and essential transition metals. We found that zinc specifically increased C. albicans autoaggregation induced by Sap6; and that Sap6 itself bound zinc ions. In silico analysis of Sap6 predicted four amyloidogenic regions that were synthesized as peptides (P1–P4). All peptides, as well as full length Sap6, demonstrated amyloid properties, and addition of zinc further increased amyloid formation. Disruption of amyloid regions by Congo red significantly reduced auotoaggregation. Deletion of C. albicans genes that control zinc acquisition in the ZAP1 regulon, including zinc transporters (Pra1 and Zrt1) and other zinc-regulated surface proteins, resulted in lower autoaggregation and reduction of surface binding of Sap6. Cells with high expression of PRA1 and ZRT1 also showed increased Sap6-mediated autoaggregation. C. albicans ∆sap6 deletion mutants failed to accumulate intracellular zinc comparable to ∆zap1, ∆zrt1, and ∆pra1 cells. Thus Sap6 is a multi-functional molecule containing amyloid regions that promotes autoaggregation and zinc uptake, and may serve as an additional system for the community acquisition of zinc.Rohitashw KumarChristine BreindelDarpan SaraswatPaul J. CullenMira EdgertonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-15 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Rohitashw Kumar Christine Breindel Darpan Saraswat Paul J. Cullen Mira Edgerton Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition |
description |
Abstract Candida albicans is an opportunistic fungal pathogen colonizing the oral cavity. C. albicans secreted aspartic protease Sap6 is important for virulence during oral candidiasis since it degrades host tissues to release nutrients and essential transition metals. We found that zinc specifically increased C. albicans autoaggregation induced by Sap6; and that Sap6 itself bound zinc ions. In silico analysis of Sap6 predicted four amyloidogenic regions that were synthesized as peptides (P1–P4). All peptides, as well as full length Sap6, demonstrated amyloid properties, and addition of zinc further increased amyloid formation. Disruption of amyloid regions by Congo red significantly reduced auotoaggregation. Deletion of C. albicans genes that control zinc acquisition in the ZAP1 regulon, including zinc transporters (Pra1 and Zrt1) and other zinc-regulated surface proteins, resulted in lower autoaggregation and reduction of surface binding of Sap6. Cells with high expression of PRA1 and ZRT1 also showed increased Sap6-mediated autoaggregation. C. albicans ∆sap6 deletion mutants failed to accumulate intracellular zinc comparable to ∆zap1, ∆zrt1, and ∆pra1 cells. Thus Sap6 is a multi-functional molecule containing amyloid regions that promotes autoaggregation and zinc uptake, and may serve as an additional system for the community acquisition of zinc. |
format |
article |
author |
Rohitashw Kumar Christine Breindel Darpan Saraswat Paul J. Cullen Mira Edgerton |
author_facet |
Rohitashw Kumar Christine Breindel Darpan Saraswat Paul J. Cullen Mira Edgerton |
author_sort |
Rohitashw Kumar |
title |
Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition |
title_short |
Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition |
title_full |
Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition |
title_fullStr |
Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition |
title_full_unstemmed |
Candida albicans Sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition |
title_sort |
candida albicans sap6 amyloid regions function in cellular aggregation and zinc binding, and contribute to zinc acquisition |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/15ddcf2dabd446da987100c3ae3d6c49 |
work_keys_str_mv |
AT rohitashwkumar candidaalbicanssap6amyloidregionsfunctionincellularaggregationandzincbindingandcontributetozincacquisition AT christinebreindel candidaalbicanssap6amyloidregionsfunctionincellularaggregationandzincbindingandcontributetozincacquisition AT darpansaraswat candidaalbicanssap6amyloidregionsfunctionincellularaggregationandzincbindingandcontributetozincacquisition AT pauljcullen candidaalbicanssap6amyloidregionsfunctionincellularaggregationandzincbindingandcontributetozincacquisition AT miraedgerton candidaalbicanssap6amyloidregionsfunctionincellularaggregationandzincbindingandcontributetozincacquisition |
_version_ |
1718395089327226880 |