Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics

The identification of HLA peptides by mass spectrometry is non-trivial. Here, the authors extended and used the wealth of data from the ProteomeTools project to improve the prediction of non-tryptic peptides using deep learning, and show their approach enables a variety of immunological discoveries.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Mathias Wilhelm, Daniel P. Zolg, Michael Graber, Siegfried Gessulat, Tobias Schmidt, Karsten Schnatbaum, Celina Schwencke-Westphal, Philipp Seifert, Niklas de Andrade Krätzig, Johannes Zerweck, Tobias Knaute, Eva Bräunlein, Patroklos Samaras, Ludwig Lautenbacher, Susan Klaeger, Holger Wenschuh, Roland Rad, Bernard Delanghe, Andreas Huhmer, Steven A. Carr, Karl R. Clauser, Angela M. Krackhardt, Ulf Reimer, Bernhard Kuster
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/1610571c49f445ee8754bc881b81762b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!