Deep neural networks enable quantitative movement analysis using single-camera videos
In the context of diseases impairing movement, quantitative assessment of motion is critical to medical decision-making but is currently possible only with expensive motion capture systems and trained personnel. Here, the authors present a method for predicting clinically relevant motion parameters...
Enregistré dans:
Auteurs principaux: | Łukasz Kidziński, Bryan Yang, Jennifer L. Hicks, Apoorva Rajagopal, Scott L. Delp, Michael H. Schwartz |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/16ae278becf743e49bd54eccf9afc9a2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique.
par: Nataliya Shishov, et autres
Publié: (2021) -
Accuracy of Kinovea software in estimating body segment movements during falls captured on standard video: Effects of fall direction, camera perspective and video calibration technique
par: Nataliya Shishov, et autres
Publié: (2021) -
Sensing leg movement enhances wearable monitoring of energy expenditure
par: Patrick Slade, et autres
Publié: (2021) -
Smartphones and Video Cameras: Future Methods for Blood Pressure Measurement
par: Joe Steinman, et autres
Publié: (2021) -
Video encryption/compression using compressive coded rotating mirror camera
par: Amir Matin, et autres
Publié: (2021)