Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
In this paper, we focus the problem of unsupervised domain adaptation which transfers knowledge from a well-labeled source domain to an unlabeled target domain with distinctive distributions. Based on Gromov-Hausdorff’s theory, we proposed two kinds of feature mappings in the model of joi...
Enregistré dans:
Auteurs principaux: | Wenjuan Ren, Shie Zhou, Zhanpeng Yang, Quan Shi, Xian Sun, Luyi Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/16d7b5987e864a538b69a0f7c9ea5d1e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Identification of Block-Structured Covariance Matrix on an Example of Metabolomic Data
par: Adam Mieldzioc, et autres
Publié: (2021) -
Kernel Adaptive Filters With Feedback Based on Maximum Correntropy
par: Shiyuan Wang, et autres
Publié: (2018) -
Coupling Matrix Extraction of Microwave Filters by Using One-Dimensional Convolutional Autoencoders
par: Yongliang Zhang, et autres
Publié: (2021) -
Hybrid Matrix Completion Model for Improved Images Recovery and Recommendation Systems
par: Kai Xu, et autres
Publié: (2021) -
Fattening The Long Tail Items in E-Commerce
par: Kumar,Bipul, et autres
Publié: (2017)