Predictive Maintenance: An Autoencoder Anomaly-Based Approach for a 3 DoF Delta Robot
Performing predictive maintenance (PdM) is challenging for many reasons. Dealing with large datasets which may not contain run-to-failure data (R2F) complicates PdM even more. When no R2F data are available, identifying condition indicators (CIs), estimating the health index (HI), and thereafter, ca...
Guardado en:
Autores principales: | Kiavash Fathi, Hans Wernher van de Venn, Marcel Honegger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1856716ed8b4492c9ba6bfe0a5e7cb2f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning-based anomaly-onset aware remaining useful life estimation of bearings
por: Pooja Vinayak Kamat, et al.
Publicado: (2021) -
Journal of software maintenance and evolution research and practice.
Publicado: (2001) -
Anomaly sign detection by monitoring thousands of process values using a two-stage autoencoder
por: Susumu NAITO, et al.
Publicado: (2021) -
Review of Operation and Maintenance Methodologies for Solar Photovoltaic Microgrids
por: Ketshephaone Keisang, et al.
Publicado: (2021) -
A Fault Diagnostic Scheme for Predictive Maintenance of AC/DC Converters in MV/LV Substations
por: Giovanni Betta, et al.
Publicado: (2021)