Assessing the accuracy of automatic speech recognition for psychotherapy
Abstract Accurate transcription of audio recordings in psychotherapy would improve therapy effectiveness, clinician training, and safety monitoring. Although automatic speech recognition software is commercially available, its accuracy in mental health settings has not been well described. It is unc...
Enregistré dans:
Auteurs principaux: | Adam S. Miner, Albert Haque, Jason A. Fries, Scott L. Fleming, Denise E. Wilfley, G. Terence Wilson, Arnold Milstein, Dan Jurafsky, Bruce A. Arnow, W. Stewart Agras, Li Fei-Fei, Nigam H. Shah |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/18d9cddcaf5d45d09a077f644a1611a5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
International Seminar on Counseling and Psychotherapy
par: Amber Haque
Publié: (1998) -
Facial Recognition Intensity in Disease Diagnosis Using Automatic Facial Recognition
par: Danning Wu, et autres
Publié: (2021) -
The Impact of Attention Mechanisms on Speech Emotion Recognition
par: Shouyan Chen, et autres
Publié: (2021) -
Psychotherapy
Publié: (1963) -
Long term Suboxone™ emotional reactivity as measured by automatic detection in speech.
par: Edward Hill, et autres
Publié: (2013)