The potential of ensemble WT-EEMD-kernel extreme learning machine techniques for prediction suspended sediment concentration in successive points of a river
Sediment transport is one of the most important issues in river engineering. In this study, the capability of the Kernel Extreme Learning Machine (KELM) approach for predicting the river daily Suspended Sediment Concentration (SSC) and Discharge (SSD) was assessed. Three successive hydrometric stati...
Guardado en:
Autores principales: | Kiyoumars Roushangar, Nasrin Aghajani, Roghayeh Ghasempour, Farhad Alizadeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/19ca03f6a07e478795ae84e02f88bac5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Suspended sediment load prediction in consecutive stations of river based on ensemble pre-post-processing kernel based approaches
por: Roghayeh Ghasempour, et al.
Publicado: (2021) -
A comparative study of wavelet and empirical mode decomposition-based GPR models for river discharge relationship modeling at consecutive hydrometric stations
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
Uncertainty analysis of monthly river flow modeling in consecutive hydrometric stations using integrated data-driven models
por: Karim Amininia, et al.
Publicado: (2021) -
Application of Whale Optimization Algorithm Combined with Adaptive Neuro-Fuzzy Inference System for Estimating Suspended Sediment Load
por: Hojjat Emami, et al.
Publicado: (2021) -
Suspended sediment input from crushed-stone ford construction on the Canadian Shield in Quebec
por: Karelle Gilbert, et al.
Publicado: (2021)