The potential of ensemble WT-EEMD-kernel extreme learning machine techniques for prediction suspended sediment concentration in successive points of a river
Sediment transport is one of the most important issues in river engineering. In this study, the capability of the Kernel Extreme Learning Machine (KELM) approach for predicting the river daily Suspended Sediment Concentration (SSC) and Discharge (SSD) was assessed. Three successive hydrometric stati...
Enregistré dans:
Auteurs principaux: | Kiyoumars Roushangar, Nasrin Aghajani, Roghayeh Ghasempour, Farhad Alizadeh |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IWA Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/19ca03f6a07e478795ae84e02f88bac5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Suspended sediment load prediction in consecutive stations of river based on ensemble pre-post-processing kernel based approaches
par: Roghayeh Ghasempour, et autres
Publié: (2021) -
A comparative study of wavelet and empirical mode decomposition-based GPR models for river discharge relationship modeling at consecutive hydrometric stations
par: Kiyoumars Roushangar, et autres
Publié: (2021) -
Uncertainty analysis of monthly river flow modeling in consecutive hydrometric stations using integrated data-driven models
par: Karim Amininia, et autres
Publié: (2021) -
Application of Whale Optimization Algorithm Combined with Adaptive Neuro-Fuzzy Inference System for Estimating Suspended Sediment Load
par: Hojjat Emami, et autres
Publié: (2021) -
Suspended sediment input from crushed-stone ford construction on the Canadian Shield in Quebec
par: Karelle Gilbert, et autres
Publié: (2021)