Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics

Abstract The recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hu Zhu, Catherine Z. Chen, Srilatha Sakamuru, Jinghua Zhao, Deborah K. Ngan, Anton Simeonov, Mathew D. Hall, Menghang Xia, Wei Zheng, Ruili Huang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1a6ca3565e3544ed8363995ed6f8f3f9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1a6ca3565e3544ed8363995ed6f8f3f9
record_format dspace
spelling oai:doaj.org-article:1a6ca3565e3544ed8363995ed6f8f3f92021-12-02T14:02:54ZMining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics10.1038/s41598-021-86110-82045-2322https://doaj.org/article/1a6ca3565e3544ed8363995ed6f8f3f92021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86110-8https://doaj.org/toc/2045-2322Abstract The recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved drugs as potential treatments for COVID-19. However, the antiviral mechanisms of action of the drugs found active in these phenotypic screens remain largely unknown. In an effort to deconvolute the viral targets in pursuit of more effective anti-COVID-19 drug development, we mined our in-house database of approved drug screens against 994 assays and compared their activity profiles with the drug activity profile in a cytopathic effect (CPE) assay of SARS-CoV-2. We found that the autophagy and AP-1 signaling pathway activity profiles are significantly correlated with the anti-SARS-CoV-2 activity profile. In addition, a class of neurology/psychiatry drugs was found to be significantly enriched with anti-SARS-CoV-2 activity. Taken together, these results provide new insights into SARS-CoV-2 infection and potential targets for COVID-19 therapeutics, which can be further validated by in vivo animal studies and human clinical trials.Hu ZhuCatherine Z. ChenSrilatha SakamuruJinghua ZhaoDeborah K. NganAnton SimeonovMathew D. HallMenghang XiaWei ZhengRuili HuangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Hu Zhu
Catherine Z. Chen
Srilatha Sakamuru
Jinghua Zhao
Deborah K. Ngan
Anton Simeonov
Mathew D. Hall
Menghang Xia
Wei Zheng
Ruili Huang
Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics
description Abstract The recent global pandemic of the Coronavirus disease 2019 (COVID-19) caused by the new coronavirus SARS-CoV-2 presents an urgent need for the development of new therapeutic candidates. Many efforts have been devoted to screening existing drug libraries with the hope to repurpose approved drugs as potential treatments for COVID-19. However, the antiviral mechanisms of action of the drugs found active in these phenotypic screens remain largely unknown. In an effort to deconvolute the viral targets in pursuit of more effective anti-COVID-19 drug development, we mined our in-house database of approved drug screens against 994 assays and compared their activity profiles with the drug activity profile in a cytopathic effect (CPE) assay of SARS-CoV-2. We found that the autophagy and AP-1 signaling pathway activity profiles are significantly correlated with the anti-SARS-CoV-2 activity profile. In addition, a class of neurology/psychiatry drugs was found to be significantly enriched with anti-SARS-CoV-2 activity. Taken together, these results provide new insights into SARS-CoV-2 infection and potential targets for COVID-19 therapeutics, which can be further validated by in vivo animal studies and human clinical trials.
format article
author Hu Zhu
Catherine Z. Chen
Srilatha Sakamuru
Jinghua Zhao
Deborah K. Ngan
Anton Simeonov
Mathew D. Hall
Menghang Xia
Wei Zheng
Ruili Huang
author_facet Hu Zhu
Catherine Z. Chen
Srilatha Sakamuru
Jinghua Zhao
Deborah K. Ngan
Anton Simeonov
Mathew D. Hall
Menghang Xia
Wei Zheng
Ruili Huang
author_sort Hu Zhu
title Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics
title_short Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics
title_full Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics
title_fullStr Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics
title_full_unstemmed Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics
title_sort mining of high throughput screening database reveals ap-1 and autophagy pathways as potential targets for covid-19 therapeutics
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1a6ca3565e3544ed8363995ed6f8f3f9
work_keys_str_mv AT huzhu miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
AT catherinezchen miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
AT srilathasakamuru miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
AT jinghuazhao miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
AT deborahkngan miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
AT antonsimeonov miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
AT mathewdhall miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
AT menghangxia miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
AT weizheng miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
AT ruilihuang miningofhighthroughputscreeningdatabaserevealsap1andautophagypathwaysaspotentialtargetsforcovid19therapeutics
_version_ 1718392066684223488